语言
没有数据
通知
无通知
全ての帰納的集合は帰納的可算だが、全ての帰納的可算集合が帰納的(集合)とは言えない。 帰納的可算言語は形式言語の帰納的可算な部分集合である。 帰納的可算な公理系から導かれる全ての文の集合は帰納的可算集合である。 マチャセビッチの定理によれば、全ての帰納的可算集合はディオファントス集合である(逆も明らかに真)。
推論の手続きが帰納によっているさま。
(1)〔induction〕
数理論理学、特にモデル理論および超準解析における内的集合(ないてきしゅうごう、英: internal set)は、何らかの(集合論的)モデルの要素となる集合を言う。 内的集合の概念は、(実数全体の成す集合 ℝ の性質と超実数と呼ばれるより大きな体 *ℝ の持つ性質との間の論理的な関係を取りなす)移
なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は帰納ではなく、純粋に自然数の構造に依存した演繹論理の一種である。2 により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見えるためこのような名前がつけられた。ジョン・ウォリスによって、彼の著作Arithmetica
帰納法と関係を持つ。 構造的帰納法は、(リストや木構造のように)再帰的に定義された構造のある種の x に関する全称命題 ∀x. P(x) を証明する手法である。そのような構造の上には、整礎な半順序が定義できる。(リストに対する「部分リスト」、木構造に対する「部分木」など。) 構造的帰納法による証明
た行動系列,得られるプログラムの計算量を考慮した制約,種々の背景知識が挙げられる.背景知識としては,標準的なデータ型,使用する定義済み関数,データの流れや意図したプログラムを記述するプログラムの概形あるいはテンプレート,解の探索を誘導するヒューリスティクスやその他のバイアスが挙げられる.
生産的集合(せいさんてきしゅうごう、英: productive set)と創造的集合(そうぞうてきしゅうごう、英: creative set)とは、自然数の集合の類型であり、数理論理学において重要な応用を持つ。これらはSoare (1987)やRogers (1987)などの数理論理学のテキストにおける標準的なトピックである。