语言
没有数据
通知
无通知
微分位相幾何学における微分形式が完全 (exact) である、または完全微分形式(かんぜんびぶんけいしき、英: exact differential form)、短く完全形式 (exact form) であるとは、別の微分形式でその外微分がもとの微分形式に一致するものが存在するときに言う。すなわち
微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、英: total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされ
(1)必要な条件がすべて満たされていること。 欠点や不足が全くない・こと(さま)。
(1)〔differentiation〕
分多様体間の可微分写像に対する一般化として微分写像が得られる。 函数解析学において全微分は、フレシェ微分によって容易に一般化することができる。変分法では変分導函数(ドイツ語版)と呼ばれる。 Alle Lehrbücher der Analysis, üblicherweise Band 2, „Mehrere
背白米(せじろまい) 先白米 横白米 基白米(もとじろまい) 乳白米(にゅうはくまい) 未熟米 (みじゅくまい) 青米(あおまい) 胴割米(どうわれまい) 茶米(ちゃまい) 焼米(やけまい) 死米(しまい) しいな 不稔米(ふねんまい) 尚、米粒が外観上白濁しているものに関しては、白未熟粒や、不完全登熟粒、白色不透明粒とよばれている。
生成する部分空間が全体空間において稠密であるときその部分集合は完全である。 通常は単なる部分集合に対してそれが完全かどうかを議論するものではなく、直交系など何らかの独立性を満たすベクトルからなる集合(あるいはベクトルの列)に対して完全性を吟味する。完全な線型独立系は「基底」(ヒルベルト基底)と呼ばれる。
養素を過不足なく補える食品が、もっとも完全食の定義に近いといえる。 一般に「完全食」と呼ばれているものを、ここで挙げる。完全食の中にも、栄養素に過不足がないもの(完全食)と、過不足があるもの(準完全食)に分かれるが、一般には両者を合わせて「完全食」と言われている。 現状において、あらゆる必要栄養素