语言
没有数据
通知
无通知
微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、英: total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされ
微分積分学における関数の微分(かんすうのびぶん、英: differential of a function)とは、直感的には変数の無限小増分に対する関数の増分であり、独立変数を変化させた時の関数値の変化の主要部(英語版)を表す。具体的には、実変数関数 y = f(x) が与えられた時、y の微分 (differential)
{v'}{v}}\right).} このテクニックは f がたくさんの数の因子の積であるときに非常に有用である。このテクニックによって f′ の計算が各因子の対数導関数を計算し、和を取り、f を掛けることによってできるようになる。 対数導関数のアイデアは一階の微分方程式の積分因子手法と密接に関係している。作用素の言葉では、 D
確率論や情報科学や力学系で使用されている分配函数 (ぶんぱいかんすう、英: partition function) は、統計力学で定義されている分配函数の一般化である。確率論では、正規化された値の分配函数が、ボルツマン分布である。分配函数は、多くの概念と互いに固く結び付いて、様々な種類の量を計算す
多変数微分積分学における微分が完全 (exact, perfect) あるいは完全微分(かんぜんびぶん、英: exact differential)とは、それが適当な可微分函数 Q の微分 dQ となるときに言い、そうでないとき不完全微分(英語版)と呼ぶ。 完全微分はしばしば「全微分」('total
微分積分学において、対数微分法 (logarithmic differentiation) あるいは対数をとることによる微分 (differentiation by taking logarithms) は関数 f の対数導関数を用いるすることによって関数を微分するために使われる手法である [ ln
(1)〔differentiation〕
分数階微分積分学(ぶんすうかいびぶんせきぶんがく、英: fractional calculus)は解析学(特に微分積分学)の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する学問である。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば