语言
没有数据
通知
无通知
_{\nu \to \infty }A_{\nu }=D} が成り立つ ( D {\displaystyle D} は対角行列)。 D {\displaystyle D} の対角要素が A {\displaystyle A} の固有値で ∏ i = 1 ∞ U i {\displaystyle \prod
線型代数学において固有値分解 (英: Eigendecomposition, Eigen Value Decomposition) とは、固有値に着目した行列の分解である。 行列 A ∈ M d ( K ) {\displaystyle A\in M_{d}(K)} (K は適当な体) に対して、ある正則行列
ィリクレラプラシアンの境界での挙動に関するものである:半直線の角運動量は、その半直線がチャンクにぶつかるまで、境界の渦状の部分で反射する度に増加する。(光軸と平行なものを除く)すべての半直線は、角運動量の超過のためにチャンクの付近を必ず通る。同様に、ディリクレラプラシアンのモードはチャンクの付近で
数値解析(すうちかいせき、英: numerical analysis)は、計算機代数(英語版)とは対照的に、数値計算によって解析学の問題を近似的に解く数学の一分野である。 (狭義には「数値解析」とは「数値計算方法」の数学的な解析・分析(mathematical analysis of numerical
て任意次元の二次超曲面の分類を行った。コーシーはまた "racine caractéristique"(特性根)という言葉も考案し、これが今日「固有値」と呼ばれているものである。彼の単語は「特性方程式 (英: characteristic equation)」という用語の中に生きている。 フーリエは、1822年の有名な著書
数学の微分方程式の分野における初期値問題(しょきちもんだい、英: Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式を用いて、その未知変数の任意の点における値を求める問題のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学
数学の微分方程式の分野における境界値問題(きょうかいちもんだい、英: Boundary value problem)とは、境界条件と呼ばれる付帯的な制限が与えられている微分方程式のことである。境界値問題の解とは、与えられた境界条件を満たすような微分方程式の解のことである。 境界値問題
(1)物の売り買いに際しての金額。 値段。 あたい。 価格。