语言
没有数据
通知
无通知
計算複雑性理論では、全再帰関数の集合をRと称する。 μ再帰関数(または部分μ再帰関数)は、有限個の自然数の引数をとり、1つの自然数を返す部分関数である。μ再帰関数は初期関数を含み、合成や原始再帰やμ作用素において閉じている、部分関数の最小のクラスである。 原始再帰関数も同じような形式で定義されるが、全域関数
を偶数辺としていることが多い。 ここでは a < b < c とし、c の小さい順に並べると、c < 300 までは以下の47通りである: このうち、第1項が偶数であるものは22個である。 斜辺、最小辺、中間長それぞれの昇順列はオンライン整数列大辞典の数列 A020882、オンライン整数列大辞典の数列
(1)再び帰ること。
本項は、原始関数の一覧(げんしかんすうのいちらん)である。以下、積分定数は C {\displaystyle C} とする。 ∫ 1 a x + b d x = 1 a ln | a x + b | + C {\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac
物事のはじめ。 原始。
(1)おおもと。 はじめ。 元始。
本項は三角関数を含む式の原始関数の一覧である。式に指数関数を含むものは指数関数の原始関数の一覧を、さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。三角積分も参照のこととする。 以下の全ての記述において、a は0でない、実数とする。また、C は積分定数とする。 ∫ sin a x d x
本項は、無理関数の原始関数の一覧である。さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。本項で、積分定数は簡便のために省略している。 ∫ r d x = 1 2 ( x r + a 2 ln ( x + r ) ) {\displaystyle \int r\;dx={\frac