语言
没有数据
通知
无通知
数学において、零行列(ゼロぎょうれつ、れいぎょうれつ、zero matrix, null matrix)とは、その成分(要素)が全て 0 の行列。O あるいは 0 と記述されることが多い。 0 = [ 0 0 0 ⋯ 0 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 0 ] {\displaystyle
線型代数学において、冪等行列(べきとうぎょうれつ、英: idempotent matrix)とは、自分自身との積が自分自身に一致する行列のことである。つまり、行列 A {\displaystyle A} が冪等行列であるとは A 2 = A {\displaystyle A^{2}=A} が成り立つことである。積
冪零あるいは降中心列・昇中心列といった用語は、(導来群を作る操作を、リー括弧積で代用した類似概念を用いて)リー環の理論においても用いられる(冪零リー環の項を参照)。 考えている群が冪零であるとは、以下の同値な条件の何れか(したがってすべて)を満足するときに言う: 有限の長さの中心列
数学において、環 R の元 x はある正の整数 n が存在して xn = 0 となるときに冪零元(べきれいげん、英: nilpotent element)という。 冪零 (nilpotent) という言葉は、ベンジャミン・パースによって、多元環の元のある冪が 0 になるという文脈で1870年頃に導入された。
は冪零である。 冪零元イデアルの概念は冪零イデアルの概念と深いつながりをもち、環のあるクラスにおいて、2つの概念は一致する。イデアルが冪零であれば、もちろん冪零元イデアルであるが、冪零元イデアルは2つ以上の理由で冪零とは限らない。1つには、冪零元イデアルのいろいろな元を零
数学において、冪零リー環(べきれいリーかん、英: nilpotent Lie algebra)とはリー環のクラスの1つである。この記事では、線型空間やリー環は全て体 K {\displaystyle \mathbb {K} } 上有限次元のものとする。 リー環 g {\displaystyle {\mathfrak
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。