语言
没有数据
通知
无通知
冪零行列(べきれいぎょうれつ、べきぜろぎょうれつ、nilpotent matrix)とは、冪乗して零(零行列)となる正方行列のこと。すなわち、ある自然数 m に対して、 M m = O が成り立つ行列 M をいう。冪零行列は基底の与えられたベクトル空間に対して冪零変換を定める。 零行列は冪零行列である。
数学において、冪等性(べきとうせい、英: idempotence、「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見
∗ をもった集合の元 x は x ∗ x = x であるときに冪等元(べきとうげん、英: idempotent element)あるいは単に冪等(英: idempotent)と呼ばれる。これはその特定の元における二項演算の冪等性を反映している。 環論において(積に関する)冪等元
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。
{U}}(-\infty ,\infty )} が散乱演算子である。この散乱演算子を行列表示したものがS行列である。 散乱過程を始状態から終状態への転移としてとらえる散乱理論では、その転移確率を時間依存シュレディンガー方程式を用いて求める(時間発展についてはシュレディンガー描像から相互作用描像に書き換えてから計算するこ
線型代数学における部分行列(ぶぶんぎょうれつ、英: submatrix)または小行列(しょうぎょうれつ、独: Teilmatrix)は、与えられた行列に対してその行または列を取り除くことで作られる行列を言う。特に正方行列に対して同じ番号の行と列を取り除くことで得られる小行列は主小行列 (principal
数学において、行列群 (matrix group) は(通常は前もって固定される)ある体 K上の n 次可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n 次可逆行列を考えることができる。(行列のサイズは有限に制限されていることに注意。なぜならば任意の群は任意の体上の無限行列