语言
没有数据
通知
无通知
代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、複素代数幾何学(英語版)(complex algebraic geometry)では、函数体
多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、解析学(微分積分学、複素解析)を展開するために必要な構造を備えた空間のことである(ただし位相多様体においてはその限りではない。ただ、単に多様体と言った場合、可微分多様体か複素多様体
数学の体論・代数的整数論における代数体(だいすうたい、英: algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 [ K : Q ] {\displaystyle [K:\mathbb {Q} ]} を、K の次数といい、次数が
代数幾何学という数学の分野において、代数多様体 V の特異点 (singular point of an algebraic variety) は、この点において多様体の接空間をきちんと決められないという幾何学的な意味で'特別な'(つまり特異な)点 P である。実数体上定義された多様体の場合には、こ
数学、特に微分幾何学において、ケーラー多様体(ケーラーたようたい、英: Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。
k-回連続的微分可能とだけ仮定して Ck-級アトラス、Ck-級(可微分)多様体が定められる。 非常に一般に、任意の座標変換函数がユークリッド空間の同相写像からなる擬群(英語版) 𝒢 に属するならば、そのアトラスは 𝒢-アトラスであるという。また、チャート間の遷移写像が局所自明化を保つならば、そのアトラスはファイバー束の構造を定める。
ISSN 0010-2571, MR0006445, http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=209966 Iskovskih, V. A. (1977), “Fano threefolds. I”, Math. USSR
ニールス・アーベル(Niels Abel)とカール・グスタフ・ヤコブ・ヤコビ(Carl Gustav Jakob Jacobi)の仕事の中で、答えは定式化され、これは 2変数複素函数を意味し、4つ独立した 周期 (つまり、周期ベクトル)を持つ。これが、次元 2 のアーベル多様体(アーベル曲面)の最初の見方を与える(これを種数