语言
没有数据
通知
无通知
事象を根元事象または単純事象 (elementary event / simple event) 、複数の根元事象の和集合を複合事象 (compound event) という。つまり、 F {\displaystyle {\mathcal {F}}} は、根元事象から生成される最小の完全加法族となっている。
確率論や統計学におけるモーメント(英: moment)または積率(せきりつ)とは、確率変数のべき乗に対する期待値で与えられる特性値。 X を確率変数、α を定数としたときに、α に関するn次モーメント (n-th order moment) は次で定義される。 ⟨ ( X − α ) n ⟩ n = 1 , 2 , … {\displaystyle
事後確率(じごかくりつ、英: posterior probability)は、条件付き確率の一種。アポステリオリ確率ともいう。 ある証拠(データあるいは情報)を考慮に入れた条件で、ある変数について知られている度合を確率として表現する主観確率の一種である。 対になる用語が事前確率
についての不確かさを表す確率分布である。これは不確定な量のランダムさではなく、信念が弱いという意味の不確かさである。ベイズの定理を応用し、事前確率に尤度関数をかけて規格化する(合計量または積分量を1とする)ことで、事後確率分布が得られる。これはデータが与えられた場合の不確定量の条件付き確率である。
〔probability〕
確率論における結果(けっか、英語: outcome)とは、試行によって起こり得る結果(状態・状況)のことである。標本点(ひょうほんてん、英語: sample point)ともいう。起こる結果は1つだけであり、故に異なる結果は同時に起こらない(互いに排反である)。試行の結果全体からなる集合を標本空間(全事象)という。
と書き換えることもできる。これは事象 A と B が独立であるとは、事象 B が起こることが事象 A の確率に一切の影響を与えないことを意味する。上の定義は P(B) = 0 のときにも対応しているので、通常は上の定義を用いる。事象が独立でないことを従属という。 一般に、(有限とは限らない)事象の族 {Aλ} が独立であるとは、その部分有限族
確率論において、試行(しこう、英: trial, experiment)とは、起こりうる結果がいくつかあり、そのどれか1つだけが偶然で起こる流れのことである。試行の結果全体の集合は標本空間(全事象)と呼ばれる。 特に起こりうる結果が2つしかない試行はベルヌーイ試行と呼ばれる。 試行