语言
没有数据
通知
无通知
数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法(ぎょうれつのじょうほう)は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算
乗法論である。 特殊関数の理論として、そのような楕円函数や多変数複素解析函数のアーベル函数は、大きな対称性をもつことからその関数が多くの等式をみたすことがいえる。特別な点では具体的に計算可能な特殊値を持つ。また虚数乗法は代数的整数論の中心的なテーマであり、円分体の理論をより広く拡張する事を可能にする。
(1)掛け算で, 掛ける方の数。 a×b の b。
acceleration) とは、収束の遅い数列を収束の速い数列に変換するアルゴリズムの総称である。ただし,収束の極めて遅い対数収束列と呼ばれる数列全般に対して、収束を加速できるような単一のアルゴリズムは存在しないことが証明されている。なお、ベクトル列についても収束の加速法の研究がなされている。
漸化式を解くとは、漸化式で与えられている数列 (an) の一般項 an を n の陽な式で表すことである。 等差数列や等比数列は、その定義から極めて単純な漸化式を持つ。一般の等差数列に対する漸化式は an+1 = an + d という形に表される。定数 d はその等差数列の公差である。この漸化式は簡単に解けて、一般項は an =
種数(しゅすう、英: genus; ジーナス)は、数学用語で、分野によって似通っているがいくらか異なる意味を持つ。 連結な向き付け可能閉曲面Sの種数とは、その切断によって生じる多様体が連結のままとなるような単純な閉曲線に沿った切断の最大数を表す整数である。種数はその閉曲面のハンドルの数と等しい。これとは別にオイラー標数
数論における乗法的関数(じょうほうてきかんすう、英: multiplicative function)とは、正の整数 n の数論的関数 f(n) であって、f(1) = 1 であり、a と b が互いに素であるならば常に f(ab) = f(a) f(b) が成り立つことである。さらに、f(n) が、任意のa
掛け算。