语言
没有数据
通知
无通知
恒等式(こうとうしき、英: identity)は、恒真な等式、すなわち等号 (=) を含む数式であって、そこに現れるあらゆる変数がどのような値にあっても、常に等号で結ばれた左右二つの数式の "値" が等しいもののことを言う。変数の動く範囲は、文脈によって異なる。恒等式であることを明示するとき、= の代わりに
に合同となる分割の母関数を与えている。n=6 の分割の場合、第1恒等式のベキ乗展開において、q6 の係数は 3 であり、これが分割の仕方の個数と一致する。同様に第2恒等式では、左辺の無限級数は、6=6, 4+2 のように 和因子が2以上で2-差的となる分割の母関数を与えている。右辺の無限乗積は、6=3+3,
対義語としては変数の値にかかわらず常に偽となる矛盾である。 命題論理において、命題を記号化したものが論理式であるが、論理式を構成している、最も単純な文に相当する要素式の真偽値の取り方に関係なく常に真(恒真)となる論理式が存在し、それらはトートロジーもしくは恒真式と呼ばれる。真にも偽にもなりうる論理式を整合式(英: consistent
物理学においてハミルトン–ヤコビ方程式(ハミルトン–ヤコビほうていしき、英語: Hamilton–Jacobi equation)とは古典力学の再定式化であり、ニュートンの運動方程式、ラグランジュ力学、ハミルトン力学などの他の定式化と同値である。ハミルトン–ヤコビ方程式
という記号はロバート・レコード (Robert Recorde, 1510–1558) によって発明された。同じ長さの平行な直線よりも等しかり得るものは存在しないと考えた。 ^ 他に互いに等しい、相等しい、相等などと言うこともある。 ^ 前原 2005, p. 137. ^ 前原 2005, p. 189. 前原, 昭二『記号論理入門
したがって、ヤコビ法で解が収束した場合、その解は連立方程式の解となる。 また、その収束の十分条件は、係数行列の対角要素の絶対値が非対角要素の絶対値よりも相対的に大きい場合、すなわち対角優位な行列である場合に収束する。これはガウス=ザイデル法も同様である。 ヤコビ法の式はベクトル x → {\displaystyle
この項目では、インド・ヨーロッパ語族風に、名前を名姓順で表記していますが、ハンガリー語圏の慣習に従いヤコビ・ローランドと表記することもあります。(Template:ハンガリー人の姓名) ローランド・ヤコビ(Roland Jacobi 1893年3月9日 – 1951年5月22日)は、ハンガリーの卓球選手。
g} が属する円分体よりも小さい円分体に属する。例えば J ( χ , ψ ) {\displaystyle J(\chi ,\psi )} の被加数には 1の p 乗根は含まれないが、1 の (p − 1)-乗根の円分体に属する値が含まれる。ガウス和のように、ヤコビ和は円分体における素イデアル