语言
没有数据
通知
无通知
数学のグラフ理論の分野における辺推移グラフ(へんすいいグラフ、英: edge-transitive graph)とは、与えられた任意の辺 e1 および e2 に対して、e1 を e2 へと写す自己同型(英語版)が存在するようなグラフ G のことを言う。 言い換えると、グラフが辺推移的であるとは、その自己同型群が各辺の上で推移的に作用することを言う。
へ写すようなもの)が存在するグラフのことを言う。 距離推移グラフは頂点推移的、対称かつ距離正則(英語版)である。 距離推移グラフの興味深い点の一つに、それが大きな自己同型群を持つ、というものがある。いくつかの興味深い有限群は、特に直径が 2 であるような距離推移グラフの自己同型群である。 距離推移グラフは、ノルマン・L・ビッグス(英語版)と
order)と呼ぶ。 無向グラフは頂点の集合と辺(英: edge、向き付けのされていない頂点のペア)の集合で構成され、有向グラフは頂点の集合と弧(arc、向き付けのされている頂点のペア)の集合で構成される。グラフを図示する際、頂点は通常ラベル付けのされた円で表され、辺は各頂点から別の頂点へと伸びる直線あるいは矢で表される。
(1)物事の状態が時の経過につれて移り変わってゆくこと。
より少ない数の頂点を取り除いても依然として連結グラフであることを言う。 つまり、点連結度がk以上のグラフのことである。 代替的に、グラフがk-連結であるとは、それらを除いたときに グラフが非連結となるような頂点の最小部分集合の大きさが k であることを言う。 グラフが完全でないことと同値な定義は、任意の二つの頂点が
(1)一番上。 最も高い所。 てっぺん。 いただき。
推移的群作用 推移関係 推移的集合 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクしているページを見つけたら、リンクを適切な項目に張り替えて下さい。
点推定(てんすいてい、英: point estimation)とは、推計統計学において観測データに基づいて未知量に対する良好な推定(推定量)と見なせる値(統計量)を計算する手法とその結果を言う。平均値・中央値・最頻値などが用いられる。尤度関数の最頻値で推定する場合、事前分布がない場合を最尤推定