语言
没有数据
通知
无通知
気体分子や液体分子が完全弾性衝突であることは少く、運動エネルギーは衝突ごとに並進運動と内部自由度との間での交換が起こる。任意の瞬間において、衝突の(ゆらぎはあれど)半分は非弾性(衝突した粒子対は衝突前よりも運動エネルギーが減る)衝突であり、もう半分は「超弾性」(衝突前よりも運動エネルギーが増える)衝突
非弾性散乱(ひだんせいさんらん)とは、入射粒子のエネルギーが保存されないような散乱過程のこと。弾性散乱の対義語。 表示 編集
物体に外から力を加えれば変形し, その力を取り除けば元の形に戻ろうとする性質。 体積に関する体積弾性と, 形に関する形状弾性とに区別される。
ュートリノを使った実験も行われたが、同じ原理で取り扱える。 この衝突により運動量の一部が吸収されるため、この過程は非弾性散乱である。これはラザフォード散乱がエネルギー損失を伴わない弾性散乱であるのと対照的である。原子核から出てきた電子の軌跡と速度を観測する。 この結果を解析することにより、以下のような結論が得られた。
非弾性中性子散乱とは、中性子による非弾性散乱のこと。 中性子の非弾性散乱では、エネルギーや運動量が散乱体のものと交換する。 これはフォノンやマグノンなどの素励起の分散関係の測定に用いられる。 得られた分散関係を解析すると、音速やスピン間の交換相互作用が求まる。
弾性エネルギー(だんせいエネルギー、英語: elastic energy)とは、ばねやゴムなどの弾性体の変形に伴うエネルギーである。位置エネルギーの一種である。 フックの法則に従うばね係数 k のばねの伸びが x であるときの弾性エネルギーは U = 1 2 k x 2 {\displaystyle
超弾性(ちょうだんせい、Hyperelasticity)とは、物体を構成する物質の力学的特性の数理的表現のひとつであり、ひずみエネルギー密度関数(単位体積あたりのひずみエネルギーを表す弾性ポテンシャル)を有することが特徴である。超弾性を有する物質を超弾性体とよび、ゴムの最も簡易なモデルとして登場し
光弾性(こうだんせい、Photoelasticity)とは、外力を受けた弾性体が複屈折を起こす性質。光弾性の性質を持つ物体を光弾性体という。 光弾性は、材料の応力分布を解析する実験法としてよく使われる。単純な計算で求めた応力分布と比較して、かなり正確な分布が得られる。材料の臨界応力を求めるのに重要な