语言
没有数据
通知
无通知
複素数型(ふくそすうがた、英: complex data type)とは、いくつかのプログラミング言語において標準で用意されているデータ型の1つで、複素数の表現および演算を取り扱うものである。コンピュータが(厳密には)実数を扱えるわけではないので、複素数も同様に、実際は浮動小数点型のタプルである。
〔数〕
O(1, 1) と呼ばれる群を成す。この群は双曲的回転と z ↦ ±z および z ↦ ±z* で与えられる4つの離散的鏡映変換の組み合わせからなる(双曲的回転の全体は SO+(1, 1) で表される O(1, 1) の部分群を成す)。 双曲角 θ を双曲回転 exp(jθ) へ写す指数写像 exp
抽象代数学における双複素数(そうふくそすう、英: bicomplex number; 複複素数)とは、複素数の順序対 (w, z) としてケーリー=ディクソン構成から得られる。ここに、双複素数の共軛が (w, z)* ≔ (w, −z) で、また二つの双複素数の積が ( u , v ) ( w
2πi だけ跳ぶ。 もっと別な方法を用いれば、各非零複素数に対して対数を一つずつ選んでできる函数 L(z) が C* の全ての点上で連続となることができるであろうか、残念ながら答えは「否」である。その理由を見るために、そのような対数函数を単位円に沿って追跡する(つまり、L を、θ が 0 から 2π
を持つ周期函数である。一般に任意の整数 n に対して exp(z + 2nπi) = exp(z) が成り立つ。この周期性のために、逆函数となるべき対数函数の複素数への拡張は無限多価となる。 絶対値に関して、|exp(z)| = |ex| および |exp(iy)| = 1 が成り立つ。すなわち、複素指数函数の絶対値は引数の実部
複素速度ポテンシャル(ふくそそくどぽてんしゃる、英: complex velocity potential)または複素ポテンシャルとは、流体力学において複素平面上に定義される正則関数である。ある特別な条件下の流れ場について解析を容易にするために用いられる。 2次元かつ非粘性、渦なしの流れについて、速度ポテンシャル
など)。 数において複数とは1より多い(つまり2以上)の個数を一括りで表現した表現である。複数に含まれないものは、単数、零、負数などであり、通常は小数や分数も含まれない。 主に個数に対して扱い、長さや体積などに対しては複数という言葉は使用されない。ただし、年などには複数年などのように使用される。