语言
没有数据
通知
无通知
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
フーリエ級数(フーリエきゅうすう、英語: Fourier series)とは、複雑な周期関数や周期信号を単純な形の周期性をもつ関数の無限和(級数)によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。
グランディ級数を発散幾何級数(英語版)として扱う方法を用いると、通常の収束する幾何級数(等比級数)と同じように代数的な操作の下で、グランディ級数に対する第三の値が得られる: S := 1 − 1 + 1 − 1 + ⋯ {\displaystyle S:=1-1+1-1+\cdots
例えば、ベキ級数のとき、収束円周上の点を除いて、収束すればその点で絶対収束するが、 ディリクレ級数の場合、収束しても絶対収束するとは限らない。以下のことが成り立つからである。 収束軸 σ c {\displaystyle \scriptstyle \sigma _{c}} が有限の値であるディリクレ級数 ∑
の形の無限級数である。ここで an は n 番目の項の係数を表し、c は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において c(級数の中心 (center))は 0 である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形
ローラン級数(ローランきゅうすう、英: Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。
{\displaystyle u_{n}:=\sum _{i=0}^{n}A^{i}v} で定義される un が逐次近似解となる。ノイマン級数は、一定の条件が満たされば、n → ∞ で逐次近似解 un が真の解となり、 u = ( I − A ) − 1 v = v + A v + A 2 v + ⋯
数学における二重数(にじゅうすう、英: dual numbers)または双対数(そうついすう)とは、実数 a, b と ε2 = 0(複零性)を満たす実数でない ε を用いて z = a + bε と表すことのできる数のことである。 二重数全体は、実数全体に ε2 = 0 を満たす新しい元 ε