语言
没有数据
通知
无通知
超越関数(ちょうえつかんすう、英: transcendental function)とは、多項式方程式を満たさない解析関数であり、代数関数と対照的である。言い換えると、超越関数は加算、乗算そして冪根という代数的演算を有限回用いて表せないという意味で代数を「超越」したものである。
で変数変換した級数で考えている。 ^ しかしながら、例えば e + π, e − π のうち少なくとも一方は超越数である。これは代数的数全体が体をなすことから分かる。 ^ trans.deg は、超越次数を表す。代数性・超越性 を参照。 ^ 実数の部分集合の場合は、1次元のルベーグ測度、複素数の部分集合の場合は、2次元のルベーグ測度の意味で、測度
においてちょうど n 個の零点を持つから、多項式は零点を多く持つとそれだけ増大度もより速くなる。このことは整函数においても同様であるが、より複雑である。整函数の増大度と零点分布の間の関係として 定理 有限増大度 ρ および精密増大度 ρ(r) の函数が、絶対値 r 以下の零点を n(r) 個持つとすれば、不等式
数学において超関数(ちょうかんすう、英: generalized function)は、関数の概念を一般化するもので、いくつかの理論が知られている。超関数の重要な利点として、不連続関数の扱いを滑らかな関数に似せることができることが挙げられる。また点電荷のような離散的な物理現象の記述にも便利である。超関数
Fp)上の次数である。 体拡大 L/K は、K 上代数的に独立で、L = K(S) であるような、L のある部分集合 S が存在するときに、純超越的(purely transcendental)と言う。 拡大が代数的であることとその超越次数が 0 であることは同値である。このとき空集合が超越基底である。
(1)普通の程度をこえ, すぐれていること。 とびぬけてすぐれていること。
「ちょうえつ(超越){(3)}」に同じ。
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。