语言
没有数据
通知
无通知
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
超幾何関数(ちょうきかかんすう、英: hypergeometric function)は以下の超幾何級数で定義される特殊関数である。 F ( a , b ; c ; z ) := 2 F 1 [ a , b c ; z ] = ∑ n = 0 ∞ ( a ) n ( b ) n ( c ) n n
超幾何分布(ちょうきかぶんぷ、英: hypergeometric distribution)とは、成功状態をもつ母集団から非復元抽出したときに成功状態がいくつあるかという確率を与える離散確率分布の一種である。男女・合否などのように2種の排他的属性に分割できる有限母集団からの非復元抽出に適用される。超
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
幾何光学において、アイコナール方程式(アイコナールほうていしき)は光の伝播をあらわす基礎方程式である。 形式的には解析力学のハミルトン=ヤコビの方程式と同じ形である。 幾何光学の近似(波長が十分小さい)のもとで、マクスウェルの方程式から等位相面をあらわす量 L ( r ) {\displaystyle
ボルツマン方程式 (英: Boltzmann equation)は、運動論的方程式の一つの形で、粒子間の2体衝突の効果だけを出来るだけ精確に取り入れたボルツマンの衝突項を右辺にもつ方程式である。そしてそれは気体中の熱伝導、拡散などの輸送現象を論ずる気体分子運動論の基本となる方程式である。 時刻 t における速度分布関数
ラプラス方程式(ラプラスほうていしき、英: Laplace's equation)は、2階線型の楕円型偏微分方程式 ∇2φ = Δφ = 0 である。ここで、∇2 = Δ はラプラシアン(ラプラス作用素、ラプラスの演算子)である。なお、∇ についてはナブラを参照。ラプラ