语言
没有数据
通知
无通知
の実現値が x 以下になる確率の関数のこと。連続型確率変数では、負の無限大から x まで確率密度関数を定積分したもの。 累積分布関数は同時確率分布でも条件付き確率分布でも定義される。 実数値確率変数 X の累積分布関数は以下で定義される。この確率は下側確率 (lower-tail probability)
数学において、指数積分(しすうせきぶん、英: exponential integral)Ei は指数関数を含む積分によって定義される特殊関数の一つである。 実数 x≠0 に対し指数積分 Ei(x) は次のように定義される。 Ei ( x ) = − p . v . ∫ − x ∞ e − t
ニュートン・コーツの公式 中点則:区分求積法の定義で用いられる、シンプルな長方形近似 それについでシンプルな台形公式 簡便な割に高精度なシンプソンの公式 ロンバーグ積分 (台形公式と数列の加速法を組み合わせた公式) 積分点を適応的に取るガウス求積、ガウス=クロンロッド求積法、クレンショー・カーティス法(英語版)
数学において、対数積分(たいすうせきぶん、英: logarithmic integral function)li(x) とは、全ての正の実数 x ≠ 1 において次の自然対数 ln を含む定積分によって定義される特殊関数である。 li ( x ) = ∫ 0 x d t ln t {\displaystyle
熱浴と接触する閉鎖系を表現するアンサンブルである。パラメータ β は熱浴を特徴づける量で、熱浴の温度と解釈される。熱力学温度 T とは β=1/kT の関係にあり、逆温度と呼ばれる。k はボルツマン定数である。分配関数に定数を乗じることはエネルギーの基準値をずらすことに等しい。分配関数の大きさそのものには意味がない。
分布関数(ぶんぷかんすう、英: distribution function)とは、 確率論において、累積分布関数の事 物理学において、単一粒子位相空間での単位体積当たりの粒子数の関数の事 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用
〔integral〕 (名)
確率論や統計学において、確率変数 X の積率母関数またはモーメント母関数(英: moment-generating function)は、期待値が存在するならば次の式で定義される。 M X ( t ) := E ( e t X ) , t ∈ R {\displaystyle M_{X}(t):=E\left(e^{tX}\right)