语言
没有数据
通知
无通知
〔arithmetic〕
日本古来の数学。 特に江戸時代, 関孝和の流れをくむ関流の数学が画期的な発展を示し, 方程式論・行列式などを含む点竄術(テンザンジユツ)や, 円周率・定積分などを扱う円理など, 非常に高い水準をみせたが, 明治以降, 西洋数学が取り入れられるに及んで衰退。
算術オーバーフロー(さんじゅつオーバーフロー、英: arithmetic overflow)あるいは単にオーバーフローは、デジタルコンピュータにおいて、演算結果がレジスタの表せる範囲や記憶装置上の格納域に記録できる範囲を超えてしまう現象、またはその結果レジスタ等に格納される値を意味する。オーバーフロ
公理には数学的帰納法の公理型を含む。 プレスバーガー算術は加法と乗法両方含むペアノ算術より弱い体系である。ペアノ算術とは異なりプレスバーガー算術は決定可能である。 これはプレスバーガー算術の言語で書かれた任意の閉論理式がプレスバーガー算術の公理で証明可能かどうかを判定するアルゴリズムが存在することを意味する。
数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、英: modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で))自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones
平均との区別が明らかであれば平均値と呼ばれる。 上記の平均年収の例を見ても分かるように、算術平均を代表値として使う場合には、ロバスト統計量ではないことに注意が必要である。外れ値の影響を大きく受ける。特に歪度の大きい分布では算術平均
『九章算術』(きゅうしょうさんじゅつ)は、古代中国の数学書。 著者は不明だが、加筆修正を経て次第に現在に伝わる形に完成したとされている。研究によると前漢の張蒼や耿寿昌も加筆した。263年に三国時代の魏の劉徽が本書の註釈本を制作したことなどから、制作年代は紀元前1世紀から紀元後2世紀と考えられている。
2の確率で出現するとき、それぞれ半開区間 [0, 0.5), [0.5, 0.8), [0.8, 1) に割り当てる。次に、AA, AB, ACについては、半開区間 [0, 0.25), [0.25, 0.4), [0.4, 0.5) に割り当てる。この手順を繰り返して、符号化したいデータの系列について、対応する半開