语言
没有数据
通知
无通知
数学において、指数積分(しすうせきぶん、英: exponential integral)Ei は指数関数を含む積分によって定義される特殊関数の一つである。 実数 x≠0 に対し指数積分 Ei(x) は次のように定義される。 Ei ( x ) = − p . v . ∫ − x ∞ e − t
ニュートン・コーツの公式 中点則:区分求積法の定義で用いられる、シンプルな長方形近似 それについでシンプルな台形公式 簡便な割に高精度なシンプソンの公式 ロンバーグ積分 (台形公式と数列の加速法を組み合わせた公式) 積分点を適応的に取るガウス求積、ガウス=クロンロッド求積法、クレンショー・カーティス法(英語版)
数学において、対数積分(たいすうせきぶん、英: logarithmic integral function)li(x) とは、全ての正の実数 x ≠ 1 において次の自然対数 ln を含む定積分によって定義される特殊関数である。 li ( x ) = ∫ 0 x d t ln t {\displaystyle
[脚注の使い方] ^ 不定積分あるいは原始関数を求めることを積分するという ^ a b 黒木哲徳『なっとくする数学記号』講談社〈ブルーバックス〉、2021年、79,216頁。ISBN 9784065225509。 積分法(定積分) ルベーグ積分 ルベーグの微分定理 部分積分 置換積分 Wolram Mathematica
〔integral〕 (名)
数学において、積分判定法(せきぶんはんていほう、英: integral test for convergence)は非負項無限級数の収束性を判定する方法の一つである。コリン・マクローリンとオーギュスタン=ルイ・コーシーによって発展させられたことから、マクローリン・コーシーの判定法の呼称でも知られている。
分数階微分積分学(ぶんすうかいびぶんせきぶんがく、英: fractional calculus)は解析学(特に微分積分学)の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する学問である。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば
体積積分(たいせきせきぶん、英: volume integral)とは、数学、特に多変数解析における用語で、3次元領域上の積分を指す。すなわち、多重積分の特殊な例である。積分の記号として∰が用いられる。 体積積分は特に物理学において多くの応用がなされており、例えば流束密度を求めることに利用される。 体積積分は直交座標系における関数