语言
没有数据
通知
无通知
物理学において相関関数(そうかんかんすう、英: correlation function)は、2つの物理量の間の相関を表す量である。様々な分野に登場する極めて広い概念であり、問題設定に応じて定義も僅かに異なる。 一般にx を空間、時間または時空間などのパラメータとし、x の各々の値に対応した物理量A
二つの信号を畳み込む畳み込みの式 ( f ∗ g ) ( m ) = ∑ n f ( n ) g ( m − n ) {\displaystyle (f*g)(m)=\sum _{n}{f(n)\,g(m-n)}} のうち片方の関数の信号配列の順序をフリップ(逆順に)して畳み込むと、相互相関関数を求めることができる。
普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。 日本産業規格では、相関
数を代表する文字がその値をいろいろとり得るとき, その文字をいう。 x・y・z などで示されることが多い。
GL(2) の総実代数体のヴェイユ制限(英語版)と、シンプレクティック群である。)それらは、保型表現が解析関数から生じうるものである。ある意味でこれはジーゲルとは矛盾しない。現代の理論はそれ自身の異なる方向性を持つものである。 その後の発展として、超関数 (hyperfunction)
一般に(無限個の場合をも含む)任意個数の変数を扱う場合には、用意する記号の都合上、添字記法に従う方が支配的である。 ^ 野村龍太郎,下山秀久編『工學字彙』(工學恊會, 1886)https://dl.ndl.go.jp/info:ndljp/pid/1678148/79 アリティ 族 (数学) 媒介変数 自由変数と束縛変数 変数 (プログラミング)
〔数〕
二つのものの間に関連があること。 互いに影響し合うこと。