语言
没有数据
通知
无通知
二つの信号を畳み込む畳み込みの式 ( f ∗ g ) ( m ) = ∑ n f ( n ) g ( m − n ) {\displaystyle (f*g)(m)=\sum _{n}{f(n)\,g(m-n)}} のうち片方の関数の信号配列の順序をフリップ(逆順に)して畳み込むと、相互相関関数を求めることができる。
数密度(すうみつど)は単位体積あたりの対象物の個数を表す物理量である。 対象物の粒子数に注目したいときには、密度よりも広く用いられるが、粒子1個あたりの平均質量が分かっていれば、密度と数密度は互いに換算できる。 例えば、摂氏0度、1気圧の1モルの気体は、22.4リットルの体積中にアボガドロ
の両方が確率密度関数を持つ時、あらゆる場合に2つの積分値は等しい。g が単射である必要はない。前者より後者の計算が簡単である場合がある。 上記の式は、1つよりも多くの変数に依存する変数(y と書く)に一般化できる。y が依存する変数の確率密度関数を f(x1, …, xn) とすると、依存関係は y
物理学において相関関数(そうかんかんすう、英: correlation function)は、2つの物理量の間の相関を表す量である。様々な分野に登場する極めて広い概念であり、問題設定に応じて定義も僅かに異なる。 一般にx を空間、時間または時空間などのパラメータとし、x の各々の値に対応した物理量A
(1)互いに関係のある両方の側。 たがい。
依存する電子密度によって一意に決定されることを論証する。これは、電子密度の汎関数に使用することによって、3つの空間座標について3N個の空間座標を持つN個の電子の多体問題を軽減するための土台を築く。この定理は、時間依存密度汎関数法(TDDFT)を開発するための時間依存
function)とは統計学において、ある前提条件に従って結果が出現する場合に、逆に観察結果からみて前提条件が「何々であった」と推測する尤もらしさ(もっともらしさ)を表す数値を、「何々」を変数とする関数として捉えたものである。また単に尤度ともいう。 その相対値に意味があり、最尤法、尤度比検定などで用いられる。
(pH) が適用できない場合に用いられる。酸度関数には幾つかの種類があるが、酸についてはルイス・ハメットによって提唱されたハメットの酸度関数 H0 を、塩基についてはほぼ同じ形式の関数 H_ を用いる場合が多い。 一般的な水溶液の酸性・塩基性の尺度としては水素イオン指数 (pH) が広く利用されている。ところが、pH