语言
没有数据
通知
无通知
{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。
任意の加法的関数 f(n) を用いて、乗法的関数 g(n), すなわち、互いに素な a と b に対して g(ab) = g(a) × g(b) を満たすような関数を作ることは簡単である。例えば、g(n) = 2f(n) とおけばよい。 ^ 可算和と可換であることを意味するσ加法性も「完全加法性」(completely
数論における乗法的関数(じょうほうてきかんすう、英: multiplicative function)とは、正の整数 n の数論的関数 f(n) であって、f(1) = 1 であり、a と b が互いに素であるならば常に f(ab) = f(a) f(b) が成り立つことである。さらに、f(n) が、任意のa
成してゆけることはむしろ稀である。目的を成し遂げた人を調べてみると判ることであるが、たいていは、途中でさまざまな困難に遭遇し、それでも諦めず、何度か目標を見直したり再設定したりして、(日々コツコツと)目標をひとつひとつ達成するための行動をつづけ、その結果、目的を成し遂げている。 2016年2月/
指数関数的成長(しすうかんすうてきせいちょう、英: exponential growth)とは、ある量が増大する速さが増大する量に比例する現象のことである。数学的に記述すれば、この過程は以下の微分方程式 d N d t = k N {\displaystyle {\frac {dN}{dt}}=kN}
対数関数的成長(たいすうかんすうてきせいちょう、英:logarithmic growth)または対数関数的増加、対数的増加とは、ある量の増大する速さが時間が経つにつれて、どんどん減少する対数関数で表せる現象のことである(例: y = C log x {\displaystyle y=C\log
指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 d N d t = − λ N {\displaystyle {\frac {dN}{dt}}=-\lambda
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha