语言
没有数据
通知
无通知
{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。
のオイラー積の類似によって定義される。ここに、積はスキーム X の全ての閉点 x を渡るものとする。同じことであるが、積はその点での剰余体が有限である全ての点を渡るものとする。剰余体の点の数を N(x) で表す。 例えば、X を q 個の元を持つ有限体のスペクトルとすると、 ζ X ( s ) = 1 1 −
代数的整数論(だいすうてきせいすうろん、英: algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は
依存する電子密度によって一意に決定されることを論証する。これは、電子密度の汎関数に使用することによって、3つの空間座標について3N個の空間座標を持つN個の電子の多体問題を軽減するための土台を築く。この定理は、時間依存密度汎関数法(TDDFT)を開発するための時間依存
ディオファントスはまた、線型な不定方程式の整数解を求める方法について考察した。線型不定方程式とは、解の単一の離散集合を得るには情報が不足している方程式を指す。例えば、 x + y = 5 {\displaystyle x+y=5} という方程式は、x と y が整数だとしても解
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha
混成汎関数(こんせいはんかんすう、英: Hybrid functional、ハイブリッド汎関数)は、コーン・シャム密度汎関数理論における交換–電子相関エネルギー汎関数に対する近似の一分類である。非経験的または経験的な方法で得た交換および相関エネルギーとハートリー=フォック理論からの正確な交換エネル