语言
没有数据
通知
无通知
は依然として議論が続いている。 [脚注の使い方] ^ リビーが用いたオリジナルの試料の一部は再測定され、リビーとおおむね良く一致する結果が得られた。結果は2018年に公刊された。 ^ 地表の下で宇宙線が窒素や酸素と相互作用することでも14Cが作られる。状況によってはこの14Cが大気に移動することが
- アルゴン法 アルゴン - アルゴン法 ウラン - 鉛法 (U-Pb) ルビジウム - ストロンチウム法 (Rb-Sr) ヘリウム-ヘリウム法 (He-He) ヨウ素-キセノン法 (I-Xe) ランタン-バリウム法 (La-Ba) 鉛-鉛法 (Pb-Pb) ルテチウム-ハフニウム法 (Lu-Hf)
放射測定(ほうしゃそくてい、英: radiometry)は、光学において、可視光線を含む電磁波一般の測定を指す。光は光度測定によっても測定できるが、そちらは絶対強度よりも人間の目から見た明るさなどを扱う。 放射測定は天文学、特に電波天文学で重要であり、リモートセンシングでも重要である。放射測定
年代測定(ねんだいそくてい、absolute dating)は、現在手に入れられるものから、その年代(古さ)を測定する技術である。 年代には、順序を決める相対年代と、年を単位として計る絶対年代があるが、絶対年代を測定するのが年代測定である。また、当時の古文書の調査も別の分野となる。 放射年代(放射性炭素年代測定法)
Journal of clinical investigation 38.11 (1959): 1996-2016. ^ “生化夜話 第22回:イムノアッセイでイヌのアッセイ - RIAとEIA/ELISA”. Cytiva. 2020年9月28日閲覧。 免疫化学 免疫組織化学 免疫学的検定 酵素抗体法 ELISA
アミノ酸年代測定法(アミノさんねんだいそくていほう)とは考古学や法科学のために使われる理化学的年代測定法の一種。生物の遺骸からアミノ酸を採取し、そのラセミ化の程度で年代を測定する。 自然界でアミノ酸が作られるのは、ほとんどが生命活動によるものであり、そのほとんどがL体である。アミノ酸のL体とD体とは
ウランは、核分裂などが起こった時などの特殊な場合を除いて、いずれ安定して存在可能な鉛に変化する。放射性物質は、その核種によって半減期が決まっているので、試料が形成されたおおよその年代を知ることができる。なお、ウラン・鉛年代測定法は、ウラン・鉛法などと表記される場合もあるが、本稿ではウラン・鉛年代測定法という表記に統一する
のBP年代との比較を容易にするため、BP年代には5568年が今も使われている。キャリブレーションもしていないので、BP年代はそのままでは暦年代と対応付けることができない。たとえば、「BP 1000 は西暦1950年の1000年前の西暦950年」というのは厳密に言えば誤りである。 ただし、BP年代から単純計算した西暦年を