语言
没有数据
通知
无通知
微分可能(びぶんかのう) 微分 微分可能関数 正則関数 半微分可能性 微分可能条件 ラーデマッヘルの定理 リプシッツ条件 ヘルダー条件 連続 (数学) このページは数学の曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探し
微分積分学における関数の微分(かんすうのびぶん、英: differential of a function)とは、直感的には変数の無限小増分に対する関数の増分であり、独立変数を変化させた時の関数値の変化の主要部(英語版)を表す。具体的には、実変数関数 y = f(x) が与えられた時、y の微分 (differential)
a において半微分可能(はんびぶんかのう、英: semi-differentiable)と呼ばれる。 ある関数がその定義域のある内点 a において微分可能であるための必要十分条件は、それが a において半微分可能であるとともに左微分と右微分が一致することである。 半微分可能であるが微分
手続きは値を返す場合には有限の空間(領域)を使って計算するが、使用する空間の量に制限はない。手続きが必要とするだけの空間(記憶領域)が与えられるものとされる。 計算複雑性理論では、計算に必要な時間や空間に何らかの前提を設けて関数を研究する。 自然数の集合 A が計算可能(帰納的、決定可能)であるとは、数
{v'}{v}}\right).} このテクニックは f がたくさんの数の因子の積であるときに非常に有用である。このテクニックによって f′ の計算が各因子の対数導関数を計算し、和を取り、f を掛けることによってできるようになる。 対数導関数のアイデアは一階の微分方程式の積分因子手法と密接に関係している。作用素の言葉では、 D
数学の、特に測度論の分野における可測関数(かそくかんすう、英: measurable function)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測
(1)することができること。 ありうること。 また, そのさま。
これらの例は実際のところ、定義可能かつ計算不能な数の無限集合を定義し、各万能チューリングマシンごとに一つずつ与える。 実数が計算可能であるとき、かつその時に限り、自然数の集合を特性関数として見なしたとき計算可能である。 計算可能実数全体は (およびそのうち可算な稠密順序で端点の無い部分集合は)