语言
没有数据
通知
无通知
数学における区分的に一次な函数あるいは区分線形関数(くぶんせんけいかんすう、英: Piecewise linear function)とは、区分的に定義される函数で、各区分が一次函数(線型函数)となっているようなものをいう。 区分的に線型な函数の概念は、いくつか異なる文脈で意味を持つ。区分的に線型な函数
複素数関数の多価関数は、分岐とよばれる点を持つ。たとえば n 次の平方根あるいは対数関数では、0 が分岐である。逆正接関数 (arctan) では実部が 0 で虚部が i または −i の点が分岐である。つまり分岐とは、その点を挟んで一方の領域では一価、他方の領域では多価
解析学における多重対数関数(たじゅうたいすうかんすう)またはポリ対数関数(ポリたいすうかんすう、英: polylogarithm、略称ポリログ)もしくはジョンキエールの関数(ジョンキエールのかんすう、仏: fonction de Jonquière)とは特殊関数の一つで、通常 Li s ( z
準線形効用関数(じゅんせんけいこうようかんすう、英: The quasi-linear utility)とは、1つの財について線形でその他の財について厳密に上に凸である効用関数のこと。 一般的な準線形効用関数は以下のように書ける。 u ( x 1 , x 2 , … , x n ) = x 1 + θ
上式において、 x {\displaystyle x} はニューロンへの入力である。これはランプ関数(傾斜路関数)としても知られ、電気工学における半波整流回路と類似している。この活性化関数は、2000年にHahnloseらによって強い生物学的動機と数学的正当化を持って、動的ネットワークへ最初に導入さ
多数。 すうた。
(名詞的にも用いる)
〔古くは「すた」〕