语言
没有数据
通知
无通知
8 を「三二・八」と表記する。 日本語では小数点を「コンマ」と言い表すことがあり、例えば、0.3秒を「コンマ3秒」と言う。また「コンマ以下(人の価値、度量、人物が人並み以下であること)」という言い回しがある。これらは、明治期に小数点としてコンマを用いるフランスの方式が入ったことによる(#日本におけるフランス式)。
(1)得点のかず。
(−1)符号部 × 2指数部 − 15 ×(1 + 仮数部) 単精度の場合: (−1)符号部 × 2指数部 − 127 ×(1 + 仮数部) 倍精度の場合: (−1)符号部 × 2指数部 − 1023 ×(1 + 仮数部) 四倍精度の場合: (−1)符号部 × 2指数部 − 16383 ×(1 + 仮数部)
を動かすときに固定されているという意味で x は定数であると言っているのであり、最後の行では x に依存しないという意味で定数というのである。 数学において特定の数値は頻繁に表れ、慣習的に特別な記号であらわされる。そのような数値とその標準的な記号は数学定数と呼ばれる。 0 (零):群 ( Z , + ) {\displaystyle
と、数値が変化する。 微細構造定数のような無次元量の物理定数は単位の取り方に依存しないが、他の物理定数同様、その値は物理的な計測で決定され、ある数式で数学的に決定される数学定数とは根本的に異なる。 物理定数の場合、計測の条件(重力の差による「重さ」の変化など)や結果により、数学定数
数学の分野における定数関数(ていすうかんすう、英: constant function; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x) = 4 はすべての値を 4 へと写すため、定数関数である。
〔数〕 0 と 1 の間の数を 0.23 のように整数の記数法で表したときこれを純小数, 純小数に 0 でない整数部分を付けて 3.75 のように表した数を帯(タイ)小数という。 これらを一括して小数という。
ユークリッドの『原論』によれば、「位置をもち、部分を持たないものである」と定義されている。 また、公理からの演繹を重視する現代数学においては、「点とは何か」ということを直接に定義せず、単に幾何学的な集合(空間)の元のことであるとみなされる。 これは、点(または直線など)を実体のない無定義術語