语言
没有数据
通知
无通知
が大きい元素では、イオン芯による反磁性磁化率が大きくなる。よって物質の磁化率の評価をする際に、イオン芯の反磁性の分を補正する必要がある場合がある。その場合、パスカルの加成則を用い、それぞれのイオン芯の反磁性磁化率の和として全体のイオン芯の反磁性磁化率を算出する。 [脚注の使い方] ^ Sur la théorie du
また、フェリ磁性や弱強磁性は全体として磁気モーメントを持つために強磁性の一種と位置づけられているが、スピン配列からみるとむしろ反強磁性の変形である。 スピンデバイスに於けるスピンバルブのピン層として用い、磁化の方向を固定する ^ 金属イオンの半数ずつのスピンが逆方向となる。
−1)、内部磁場が排除されていることを特徴とする。 超反磁性は、物質の超伝導が相転移の段階であることを確立した。超伝導磁気浮上は、超伝導体に近づく永久磁石を反発する超反磁性と磁石が流れてしまうのを防ぐピン止め効果によるものである。 超反磁性は超伝導の特徴である。これは1933年にヴァルター・マイスナーとRobert
磁場の中に置かれたとき, 引きつけられたり, 反発したりするといった, ある種の物質の示す磁気的な性質。
は強磁性体がなぜ強磁性を持つのかを中心に関連する現象を説明する。 不対電子(ふついでんし) 多くの原子が2つずつ対となる電子を電子軌道に留めている。これら、対となる電子はその各電子のスピンをそれぞれの電子がお互いに打ち消しあうために、外部から見て磁気は発生しない。つまりヘリウム原子は1s軌道に2つの
常磁性(じょうじせい、英: paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 χ
強磁性や反強磁性と同様に転移温度で常磁性になるが、低温側の転移温度までの温度と磁化の関係(M-T曲線)は非常に複雑である。2種類の磁性イオンでネール温度(英: Néel temperature)が異なるとフェリ磁性を持つ物質は温度に対して複雑な挙動を示すことがある。強度のより高い方の磁性イオンのネール温度
磁場(反磁場)Hdが必ず発生する。 この反磁場Hdは下記のように表される。 Hd = -NJ (N : 反磁場係数) このときNは反磁場係数と呼ばれ、磁石(磁性体)の形状によって決まる数値で、反磁場係数Nの代わりに、次式で定義されるパーミアンス係数Pcを使って磁場解析をすることが多い。