语言
没有数据
通知
无通知
構造をしているという「shell模型」や、原子核全体としては水滴の様な状態であるとする「液滴模型」などがある。shell模型は核崩壊やスピンパリティ、魔法数などを上手く説明し、液滴模型は核分裂(特に自発核分裂)や変形核を上手く説明する。現在は実験によって徐々に核構造
G(Nは4つの塩基、Rはプリン塩基のいずれか)という3つのファミリーが存在する。UNCGが最も安定なテトラループである。シュードノットは、カブ黄斑モザイクウイルス(英語版)で初めて同定されたRNAの二次構造である。シュードノットはヘアピンループのループ領域のヌクレオチドがヘアピン外の1本鎖領域と対合
1)×10−15 m である。 原子核の安定性は、陽子、中性子の数と深く関わっており、特に原子核を安定にさせる魔法数と呼ばれる数が存在することがメイヤーとイェンゼンによって発見され、2人はこの法則を元に殻模型(シェルモデル)などの仮説を提唱した。ただし、最近の不安定核の
の振る舞いは、フントの規則やパウリの排他原理といったその他の原子物理学の原理によって作り上げられる。フントの規則は、たとえ同じエネルギーの複数のオービタルが利用できるとしても、その他の電子によって占有されたオービタルを再利用する前に、占有されていない軌道をまず埋める、と断言する。しかし、パウリの
結合を介した分子内の原子の距離は結合距離(けつごうきょり、bond distance)、結合の長さ(けつごうのながさ、bond length)、原子間距離(げんしかんきょり、interatomic distance)などと呼ばれる。 前述のような原因の斥力と引力とで結合力が決定づけられるので、原
形状がある程度単純なものにしか適用できない。 格子点の配分の調節が困難である。ある(精度が必要な)部分に格子点を集中させると、他の領域の格子も不必要に密になり非効率になる。 が挙げられる。 O形 空間の中にある物体から放射状に伸びる格子。全体の格子数に対して物体境界に多くの格子数を配置できる。翼型などの場合、後縁付近の格子の直行性を維持できない。
(1)全体を形づくっている種々の材料による各部分の組み合わせ。 作りや仕組み。
核構造物理学(かくこうぞうぶつりがく、Nuclear Structure Physics)とは、主として原子核の構造に関する事項を扱う物理学の一分野。 現在では、中性子と陽子という核子の自由度と有効相互作用を基にして、有限量子多体系としての原子核の性質を理解しようとしている。例えば、自己無撞着な平均