语言
没有数据
通知
无通知
単型 工業 単型:一枚の金型が一工程を担当する方式。金型を参照。 生物学 単型 (分類学) (monotypic):生物の分類において、ある分類階級の一つ下の階級が単一であること。 単型 (遺伝学) (monomorphic):集団遺伝学において、ある遺伝子座を占める遺伝子が単一である、つまり対立遺伝子が存在しないこと。
ウィクショナリーに関連の辞書項目があります。 単数 数学における環の乗法的可逆元 言語学における単数 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクし
6, 10, 22, 54, 90, 138 などが単偶数で、−40, −16, 8, 12, 28, 64, 120 などが複偶数である。二進法では、下二桁が 00 になっていれば複偶数である。 位取りの底が複偶数であれば、一の位がどの数かで単偶数か複偶数かを判別できる。例えば、十二進法では 2
固定小数点数や浮動小数点数として表せる数を指す(コンピュータの数値表現も参照)。 前述のように実数は表現できないので、以下は全て、実数型ではなく、実数の近似を表現するデータ型である。 一般的に有理数を表すには分子と分母を整数として記憶する方法が用いられる。整数型も参考のこと。 固定小数点
BigNum あるいは整数であることを示す BigInt、日本語では多倍長などといった名前で呼ばれている。任意精度演算の記事も参照のこと。 正負両方の整数を表せる符号付き整数型と、非負(0または正)の整数だけを表せる符号無し整数型とがある。固定長では、符号付き整数型
虚数単位(きょすうたんい、英: imaginary unit)は、2乗して −1 になる数である: i 2 = − 1 {\displaystyle i^{2}=-1} 虚数単位 i は −1 の平方根の一つである。 i は実数でない。実数単位 1, 虚数単位 i は R 上線型独立である。 実数体に虚数単位
全ての辺の長さが等しい時、正単体と言う。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。 r + 1個の点(の位置ベクトル)a0
単葉関数 (たんようかんすう、英: univalent function)は、複素解析における用語である。複素平面(ガウス平面)上のある開集合(領域)上で定義された複素関数が単射(1対1写像)である場合、その関数は単葉であると表現し、また、その関数を単葉関数