语言
没有数据
通知
无通知
自然数 n が多冪数(たべきすう、英: powerful number)であるとは、素数 p が n を割り切るとき、p の平方も n を割り切ることをいう。 多冪数は無数に存在し、1 から小さい順に列記すると 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72,
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
の形の無限級数である。ここで an は n 番目の項の係数を表し、c は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において c(級数の中心 (center))は 0 である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形
を法とする整数の乗法群(もしくは環 Z/pnZ の単数群を考えることと同等)は巡回的である。一方で2の冪は一般には原始根を持たない。Z/2nZ の単数群は n = 1, 2 では巡回的だが、n が3以上なら巡回的ではなく、2つの巡回群の直積 C2×C2n-2 に同型である。
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。
の切断冪函数は単位ステップ関数: x + 0 = { 1 ( x > 0 ) , 0 ( x ≤ 0 ) . {\displaystyle x_{+}^{0}={\begin{cases}1&\ (x>0),\\0&\ (x\leq 0).\end{cases}}} 指数 1 の切断冪函数はランプ関数:
は根号 (radical sign, radix) と呼ばれる。また、根号の中に書かれた数 x は時に被開平数 (radicand) と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 (principal root) と呼び、特に 2乗根の主要根を主平方根
- 司音、白浅、素素 役(一人三役) 君は僕の談判官(原題:谈判官、中国、2018年) - トン・ウェイ 役 扶揺〜伝説の皇后〜(原題:扶摇、中国、2018年) - 扶揺(フーヤオ) 役 暴風眼 -特命捜査官-(原題:暴風眼、中国、2021年) - 安静(アン・ジン) 役 斛珠<コクジュ>夫人