语言
没有数据
通知
无通知
(Kn)n から K への交代作用素である。また、V の k 個のベクトルにその楔積となる k-重ベクトルを対応させる写像 w: Vk → ⋀k (V) も交代的である。事実として、この写像は Vk 上定義される交代作用素の中で「もっとも一般」なものである。つまり、交代作用素 f: Vk → X が与えられたとき、線型写像
R-代数(多元環)のテンソル積には再び R-代数の構造を入れることができ、代数のテンソル積 (tensor product of algebras) あるいはテンソル積多元環と呼ばれる対象が得られる。任意の環は Z-代数と見ることができるから、R ≔ Z と取った特別の場合として環のテンソル積 (tensor
「代数学」の略。
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
数学において、指数積分(しすうせきぶん、英: exponential integral)Ei は指数関数を含む積分によって定義される特殊関数の一つである。 実数 x≠0 に対し指数積分 Ei(x) は次のように定義される。 Ei ( x ) = − p . v . ∫ − x ∞ e − t
ニュートン・コーツの公式 中点則:区分求積法の定義で用いられる、シンプルな長方形近似 それについでシンプルな台形公式 簡便な割に高精度なシンプソンの公式 ロンバーグ積分 (台形公式と数列の加速法を組み合わせた公式) 積分点を適応的に取るガウス求積、ガウス=クロンロッド求積法、クレンショー・カーティス法(英語版)
数学において、対数積分(たいすうせきぶん、英: logarithmic integral function)li(x) とは、全ての正の実数 x ≠ 1 において次の自然対数 ln を含む定積分によって定義される特殊関数である。 li ( x ) = ∫ 0 x d t ln t {\displaystyle