语言
没有数据
通知
无通知
加法で, 加える方の数。 a+b の b をいう。
任意の加法的関数 f(n) を用いて、乗法的関数 g(n), すなわち、互いに素な a と b に対して g(ab) = g(a) × g(b) を満たすような関数を作ることは簡単である。例えば、g(n) = 2f(n) とおけばよい。 ^ 可算和と可換であることを意味するσ加法性も「完全加法性」(completely
二つ以上の数を加える計算の方法。 その結果を和という。 寄せ算。 足し算。
「代数学」の略。
acceleration) とは、収束の遅い数列を収束の速い数列に変換するアルゴリズムの総称である。ただし,収束の極めて遅い対数収束列と呼ばれる数列全般に対して、収束を加速できるような単一のアルゴリズムは存在しないことが証明されている。なお、ベクトル列についても収束の加速法の研究がなされている。
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
を満たすという意味で交代性を持つものをいう。 任意の結合多元環は明らかに交代的だが、八元数環のように厳密に非結合的な交代代数もたくさんある。他方、十六元数環のように交代的ですらないものもある。 交代多元環の名称における「交代的」というのは、実際にはその任意の結合子(英語版)が多重線型形式として交代的 (alternating