语言
没有数据
通知
无通知
によって決定されるある準同型であり、連結準同型 (connecting homomorphism) と呼ばれる。この定理を位相幾何学的に表現すれば、マイヤー・ヴィートリス完全系列や相対ホモロジー(英語版)の長完全列が現れる。 コホモロジー論は、位相空間、層、群、環、リー環、そしてC*-環といった、多くの異なる対象に対して定義され
が正則であることは同値であり、そのとき射影次元と R のクルル次元と一致する。同様に加群に対して 移入次元 id(M) や平坦次元 fd(M) も定義される。 移入次元や射影次元は右 R 加群の圏上 R の右大域次元と呼ばれる R のホモロジー次元を定義するために用いられる。同様に、平坦次元は弱大域次元
ホモロジー次元(ホモロジーじげん、英: homological dimension)はホモロジー代数におけるいくつかの関連する概念を意味する: 射影次元、射影分解に基づいたホモロジー次元 移入次元、移入分解に基づいたホモロジー次元 平坦次元、平坦分解に基づいたホモロジー次元 大域次元
位相空間の圏から次数付きアーベル群の圏への関手になる。これらのアイデアは以下でもっと詳細に説明される。 なお「特異」という言葉はσが必ずしも良い埋め込みである必要が無いが、その像がもはや単体には見えないという”特異性”を強調する意味合いで使われている。 特異 n-単体 (singular
数理科学 計算科学—数値解析—確率論—逆問題—数理物理学—数理経済学—ゲーム理論—数理生物学—数理心理学—保険数理—数理工学 有名な定理と予想 フェルマーの最終定理—リーマン予想—連続体仮説—P≠NP予想—ゴールドバッハの予想—双子素数—ゲーデル
一般に(無限個の場合をも含む)任意個数の変数を扱う場合には、用意する記号の都合上、添字記法に従う方が支配的である。 ^ 野村龍太郎,下山秀久編『工學字彙』(工學恊會, 1886)https://dl.ndl.go.jp/info:ndljp/pid/1678148/79 アリティ 族 (数学) 媒介変数 自由変数と束縛変数 変数 (プログラミング)
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式
と、数値が変化する。 微細構造定数のような無次元量の物理定数は単位の取り方に依存しないが、他の物理定数同様、その値は物理的な計測で決定され、ある数式で数学的に決定される数学定数とは根本的に異なる。 物理定数の場合、計測の条件(重力の差による「重さ」の変化など)や結果により、数学定数