语言
没有数据
通知
无通知
1)} を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、 ζ n = e 2 π i / n {\displaystyle \zeta _{n}=e^{2\pi i/n}} とする。 3 以上の整数 m に対して、円分体 Q ( ζ m ) {\displaystyle
ウィグナー半円分布(英: Wigner semicircle distribution)とは、連続確率分布の一つで、ハンガリーのノーベル賞物理学者であるユージン・ウィグナーに因んで命名された。この分布は母数 R > 0 に対して区間 [−R, R] を台に持ち(連続単変量で有界区間に台を持つ)、特にその確率密度関数のグラフは
(1)分かれてあちこちにあること。 また, 分けてあちこちに置くこと。
口語文体の一。 文末の指定表現として「だ」を用いることを基調とする常体の文章様式。 「である体」に比べ, 相手に話しかけるような感じがある。 だ調。
楕円体(だえんたい、ellipsoid)とは楕円を三次元へ拡張したような図形であり、その表面は二次曲面である。楕円面の方程式は x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac
ε)の準位の方が一つの準位あたりの粒子数が小さくなる。また、同じエネルギーの準位でも、高い温度(小さな β、大きな T)の条件では一つの準位あたりの粒子数が大きくなる。 複雑な粒子間相互作用がなく、エネルギー準位の分布が占有数によって変化しないことを仮定する。エネルギーが ε と ε+dε の範囲にある準位の数を
フレシェ分布(英語: Fréchet distribution) は逆ワイブル分布としても知られている。フレシェ分布は、ガンベル分布(タイプIの極値分布)、ワイブル分布(タイプIIIの極値分布)とともに、一般化極値分布(英語: generalized extreme value
ディリクレ分布(ディリクレぶんぷ、英: Dirichlet distribution)は、連続型の確率分布である。ベータ分布を多変量に拡張して一般化した形をしており、そのため多変量ベータ分布とも呼ばれる。ディリクレ分布の確率密度関数は、同時に発生することのない K {\displaystyle K} 個の事象がそれぞれ