语言
没有数据
通知
无通知
順序集合である。通常、type(Q, 整列集合の順序型を特に整列順序型と呼ぶ。α
整列集合の順序型を特に整列順序型と呼ぶ。α
f(x2) で X での順序を定めると、X は全順序集合になる。 適当な順序数で添字付けられた全順序集合族のデカルト積は、その上に辞書式順序を入れることにより、それ自身全順序集合になる。例えば、アルファベット順に並べた任意の語の集合が全順序付けられることは、(スペースの記号をどの文字よりも小さいものとして
2-組(あるいは二つ組, couple)は特に対 (pair) または順序対 (ordered pair) という特別な呼称を持つ。 小さい n に対する n-組はしばしば、3-組を「三つ組」(triple)、4-組を「四つ組」(quadruple) などのように呼ぶこともある。
がないことを意味する。 順序群の順序が全順序ならば全順序群(または線型順序群)といい、順序が束(つまり任意の二元集合が上限を持つ) ならば束群 (lattice-ordered group; ℓ-group) と呼ぶ。 リース群は束群より少し弱い性質を満たす無孔順序群である。つまり、リース群は リースの補間条件:
濃な集合全体の成すクラスとして定義する方法論と似て整然としたものである。 モース=ケリー集合論では真のクラスを自由に扱うことができる (Morse 1965)。モースは成分が集合のみならず真のクラスであるような順序対を定義した(クラトフスキーの定義ではそのような
数学における順序体(じゅんじょたい、英: ordered field)とは、全順序をもつ体で、その順序が体の演算と両立するもののことである。 順序体は標数 0 でなければならず、任意の自然数 0, 1, 1 + 1, 1 + 1 + 1, … は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体には順序を定義することができない。
min(A)} は有限集合 } 上の関係 を、 f (をみたす最大の b ∈ B に対して f(b) は整列集合であり、その順序数は (A,
が存在しないこと。 x が A の下界 (lower bound) であるとは、A の任意の元 y に対して y ≥ x となること。 x が A の下限 (infimum) あるいは最大下界 (greatest lower bound) であるとは、x が A の下界全体の集合の最大元となること。これは存在すれば一意的に決まり、inf
点火順序(てんかじゅんじょ、英: Firing Order)は複数のシリンダーを持つ内燃機関の、それぞれのシリンダーで膨張(燃焼)行程が発生する順番である。火花点火式エンジンではスパークプラグが点火する順番を指し、ディーゼルエンジンでは燃料を噴射する順番を指す。 適切な点火