语言
没有数据
通知
无通知
以下の最大の素数を p として、p# に等しい。p に素数の値を小さい順に代入していくことより、素数階乗の値は小さい順に 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, … 5# 以上の素数階乗数は全て一の位が
階乗素数(かいじょうそすう、英: factorial prime)とは、階乗との差が 1 である素数のことである。つまり、n! ± 1(n は自然数)と表される素数のことである。 階乗素数は少ないことと、自然数の中でしばしば合成数が連続して存在することが説明できる。n! ± k (2 ≤ k ≤ n)
30031, 510511, 9699691, 223092871, …(オンライン整数列大辞典の数列 A6862) このうち、素数であるもののみを抜き出すと、 3, 7, 31, 211, 2311, 200560490131, …(A18239) であり、この次の数は154桁になる。p# + 1 が素数となるような素数
〔factorial〕
として働く数に用いられる。rank(もしくはorder)の和訳語。 行列・線型写像の階数 集合の階数 群の階数(英語版)・アーベル群の階数・自由加群の階数:有限生成アーベル群の基本定理も参照のこと。 コンパクト群・非コンパクト群の分裂階数 (split-rank)、半単純階数 (semisimple-rank) リー群の階数(英語版)
(1)掛け算で, 掛ける方の数。 a×b の b。
f(x+(k-1)h)} で与えられる。この記法の下で上昇階乗冪は [x]k/1 であり下降階乗冪は [x]k/−1 である。 [脚注の使い方] ^ 降冪、下方階乗冪とも。 ^ 昇冪、上方階乗冪とも。 ^ 特に (x)n のことを言い、上昇階乗冪を表す記号とする文献もあるので注意(この場合、下降階乗冪は
数学における自然数の組合せ論的函数(二項係数・階乗類似函数)として、超階乗(ちょうかいじょう、英: superfactorial)n$ は階乗の拡張となるものである。ただし、幾つかの異なる定義が存在する。 クリフォード・ピックオーバー(英語版)は1995年に著書 Keys to Infinity において、次の超階乗を定義するために新しい表記