语言
没有数据
通知
无通知
計算木論理(けいさんきろんり、Computational Tree Logic、CTL)は、分岐時相論理の一種である。その時間モデルでは未来は決定されておらず木構造のように分岐している。未来の複数の経路のうちの1つが実際に現実の経路となる。 ϕ ::= F | T | p | ( ¬ ϕ ) | (
は、認知プロセスに3段階の記述レベルがあるとした。 計算レベル(computational level): 認知プロセスによって計算される問題(入出力マッピングなど)を記述する。 アルゴリズムレベル(algorithmic level): 計算レベルで提示された問題を計算するのに必要なアルゴリズムを提示する。 実装レベル(implementational
number-theory/algorithmic-number-theory-lattices-number-fields-curves-and-cryptography?format=HB&isbn=9780521808545 Henri Cohen (1993). A Course In
演算(演算子)はブール代数を構成する。 コンピュータのプロセッサやプログラミング言語で多用されるものに、ブーリアン型を対象とした通常の論理演算の他に、ワード等のビット毎に論理演算を行なう演算があり、ビット演算という。 なお、証明論的には、公理と推論規則に従って論理式を変形(書き換え)する演算がある(証明論#証明計算の種類)。
計算複雑性理論は計算可能関数の計算の複雑さを扱う。計算理論のもう一つの重要な分野である計算可能性理論では問題の解法があるかどうかだけを扱い、その複雑さや必要とする計算資源量は問わない点が異なる。 具体的には、計算複雑性理論
計算可能性理論(けいさんかのうせいりろん、英: computability theory)とは、チューリングマシンなどの計算模型でいかなる計算問題が解けるか、またより抽象的に、計算可能な問題のクラスがいかなる構造をもっているかを調べる、計算理論や数学の一分野である。 理論計算
理論計算機科学(りろんけいさんきかがく、英語:theoretical computer science)または理論コンピュータ科学は、計算機を理論的に研究する学問で、計算機科学の一分野である。計算機を数理モデル化して数学的に研究することを特徴としている。「数学的」という言葉は広義には公理的に扱える
(1)数量を数えること。