语言
没有数据
通知
无通知
シュワルツの補題(ドイツ語: Schwarzsche Lemma、英語: Schwarz lemma)は、ドイツの数学者ヘルマン・アマンドゥス・シュワルツにちなむ、複素解析における正則関数の性質に関する定理である。複素関数が正則であるために満たすべき、強い制約条件の1つを端的に示し、リーマンの
反復補題あるいはポンピング補題(英: Pumping lemma)とは、計算可能性理論において、あるクラスの形式言語に反復を施してもそのクラスに依然として属することを示すものである。ここでいう「反復」とは、その言語に含まれる十分に長い文字列が部分に分割可能で、その一部分を繰り返したさらに長い文字列
数学において、ポアンカレの補題(ぽあんかれのほだい、英: Poincaré lemma)とは代数的位相幾何における定理の一つ。ユークリッド空間において、閉形式である微分形式が完全形式となることを主張する。ベクトル解析におけるポテンシャルの存在条件を一般化したものとみなされる。 多様体上の k 次の微分形式 ω について、その外微分
が自己準同型のときに起きる。シューアの補題は、イサイ・シューアの名前に因んでいる。彼はこの補題を使い、大直交性定理を証明し、有限群の表現論の基礎を確立した。シューアの補題は、リー群やリー代数へ一般化されており、多くの部分はジャック・ディクスミエ(英語版)によるものである。 代数 A 上の既約加群 M, N の間の
集合論においてツォルンの補題(ツォルンのほだい、英: Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。 命題 (Zorn の補題) 半順序集合Pは、その全ての鎖(つまり、全順序部分集合)がPに上界を持つとする。このとき、Pは少なくともひとつの極大元を持つ。
左分裂 (left split) 写像 t: B → A が存在して tq は A 上恒等写像である。 2. 右分裂 (right split) 写像 u: C → B が存在して ru は C 上恒等写像である。 3. 直和 (direct sum) B は A と C の直和(英語版)に同型で、q
つまり軌道の数(これは自然数あるいは+∞)は群 G の元による固定点の数の平均(これも自然数あるいは+∞)と等しい。もし G が無限群ならば |G| による除法は定義されないが、その場合には次の基数に関する主張が成り立つ。 | G | ⋅ | X / G | = ∑ g ∈ G | X g | {\displaystyle
a\;{\color {Gray}\longrightarrow }\ker b\;{\color {Gray}\longrightarrow }\ker c\;{\overset {d}{\longrightarrow }}\operatorname {coker} a\;{\color {Gray}\longrightarrow