语言
没有数据
通知
无通知
核磁気共鳴(かくじききょうめい、英: nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。 原子番号と質量数の少なくとも一方が奇数である原子核は0でない核スピン量子数 I と磁気
検出器として超伝導量子干渉素子や光ポンピング磁力計が開発されたため、低磁場NMRが見直され、研究が進みつつある。 原理は地磁気の強度に比例したラーモア周波数から地磁気の強度を算出するプロトン磁力計と同じで、地磁気NMRは、均質な磁場である地磁気
。さらに、固体NMRではさらに低い温度領域での測定も可能であり、極低温領域では磁気共鳴温度計としての利用も可能である。 核磁気共鳴分光法から得られる主なシグナル情報には、化学シフト、強度(積分値)、緩和時間、スピン結合、核オーバーハウザー効果がある。これらのシグナル情報を解釈することにより分子構造や運動性に関する情報が得られる。
分析化学 核磁気共鳴画像法 永久磁石式核磁気共鳴分光計 固体核磁気共鳴 核四重極共鳴 地磁気核磁気共鳴 低磁場核磁気共鳴 低磁場核磁気共鳴画像法 磁気異常 ホール素子 磁気抵抗効果素子(MR:AMR、GMR、TMR等) 磁気インピーダンス素子(MI素子) ウィーガント・ワイヤ フラックス・ゲートセンサ
Thybo, and S. Balling Engelsen. "Prediction of sensory texture quality of boiled potatoes from low-field 1 H NMR of raw potatoes. The role of chemical constituents
magnet)という。異方性磁石は磁化容易方向に従えば高い残留磁気分極が得られる特徴があるが、磁化容易方向と垂直方向での磁化は困難である。等方性磁石は残留磁気分極は異方性磁石よりも弱いが、どの方向に対しても同じ磁気特性を持つため多極に着磁する用途の磁石に用いられている。 永久磁石は一定の体積に磁界発生空間を確保
固体核磁気共鳴(こたいかくじききょうめい、固体NMR、英: Solid-state NMR, SSNMR)は、核磁気共鳴 (NMR) 分光法の一種。方向依存的な異方性相互作用の存在が特徴である。 スピンは磁場あるいは電場と相互作用する。空間的近接と2原子間の化学結合の両方あるいは一方は、核
NMR分光法は、リンを含む化合物の構造を決定したり純度を検定したりする目的で有用である。化学シフトならびに結合定数は広範囲に渡るが、予測は容易ではない。Gutmann-Beckett法では、分子種のルイス酸性を評価するため、31P NMR分光法とEt3POを使用する。 通常の化学シフトの範囲はおよそδ250