语言
没有数据
通知
无通知
ディフィー・ヘルマン鍵共有(ディフィー・ヘルマンかぎきょうゆう、Diffie–Hellman key exchange、DH)、あるいはディフィー・ヘルマン鍵交換(かぎこうかん)とは、事前の秘密の共有無しに、盗聴の可能性のある通信路を使って、暗号鍵の共有を可能にする、公開鍵暗号方式の暗号プロトコルである。この鍵は、共通鍵暗号の鍵として使用可能である。
数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和(この和は和差積商の和のこと)を代
楕円曲線DSA(だえんきょくせんDSA、Elliptic Curve Digital Signature Algorithm、Elliptic Curve DSA、楕円DSA、ECDSA)は、Digital Signature Algorithm (DSA) について楕円曲線暗号を用いるようにした変種である。
代数幾何学では、超楕円曲線(ちょうだえんきょくせん、英: hyperelliptic curve)は、次の形の方程式で与えられる代数曲線である。 y 2 = f ( x ) {\displaystyle y^{2}=f(x)} ここに、f(x) は n 個の異なった根を持つ次数 n > 4
短軸という。短軸の長さを短径という。 長軸と短軸の交点は楕円の中心と呼ばれる。 長軸を中心で分けた2つの線分は半長軸と呼ばれ、その長さを長半径という。 短軸を中心で分けた2つの線分は半短軸と呼ばれ、その長さを短半径という。 短径と長径の比は楕円率と呼ばれる。 2次元直交座標系で、原点
楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に ビクター・S・ミラー (Victor S .Miller(英語版)) とニール・コブリッツ (Neal
スーパー楕円(スーパーだえん、英: Superellipse)は楕円に類似した閉曲線である。この曲線は長軸、短軸およびそれらについての対称性という点で楕円と同様の幾何学的特徴を持つが、全体の形状は異なる。 直交座標系では、次の式を満たすすべての点 (x, y) の集合である | x a | n +
長円状(2つの半円を直線で繋いだ陸上競技のトラックのような形状)であった(写真)。市販されたホンダ・NRでは正規楕円包絡線形状(楕円の周上に、小円の中心を置き、小円を移動して形成される包絡線)に変更された。英語でもellipticalともされるがovalともされる。 楕円形