语言
没有数据
通知
无通知
〔algebra〕
によって決定されるある準同型であり、連結準同型 (connecting homomorphism) と呼ばれる。この定理を位相幾何学的に表現すれば、マイヤー・ヴィートリス完全系列や相対ホモロジー(英語版)の長完全列が現れる。 コホモロジー論は、位相空間、層、群、環、リー環、そしてC*-環といった、多くの異なる対象に対して定義され
渡辺敬一(日大文理):可換環論の研究とその特異点理論への応用 寺杣友秀(東大数理):周期積分と多重ゼータ値の研究 松本耕二(名大多元数理):ゼータ関数の解析的挙動の研究 中村郁(北大理):アーベル多様体のモジュライ空間とヒルベルト概型の研究 花村昌樹(東北大理):モチーフの研究 吉田敬之(京大理):保型形式と周期の研究
「代数学」の略。
核時代(かくじだい、英語: Atomic Age ; Nuclear Age)は、核兵器の時代を意味する言葉。 1958年刊レスター・B・ピアソン『核時代の外交』(近藤晋一訳、時事通信社)、1959年刊レイモンド・ガーソフ『核時代におけるソ連戦略』(海上自衛隊幹部学校訳)などのように、1950年代か
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
抽象代数学において、捩れ(ねじれ、英: torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。捩れという言葉は、捩れた図形のホモロジー群に有限位数の元が現れることに由来する。 捩れは群の元と環上の加群の元とに対してそれぞれ定義される。任意のアーベル群は整数環