语言
没有数据
通知
无通知
Finite State Machine)は、状態と入力によって次に遷移すべき状態が一意に定まる有限オートマトンである。DFA と略記される。 DFAは入力文字列を受け付ける。各入力文字について、遷移関数にしたがって新たな状態に遷移する。最後に入力文字を受け付けたとき、受理状態であれば入力文字列は受
{\displaystyle s_{0}} から開始され、入力文字列を読み込む。オートマトンは遷移関数 T {\displaystyle T} に現在状態と入力文字(あるいは空の文字)を与えて次に遷移すべき状態を得る。しかし、NFA の次の状態は現在の入力イベントのみで決定されるのではなく、その
限度・限界のある・こと(さま)。
〖automaton〗
の群の構造には n の素因数分解に依存してある制限が加わる。例えば素数 p , q に対して、 q < p かつ p -1が q で割り切れない場合は、位数 pq の群は必ず巡回群となる。必要十分条件については巡回数 (群論)(英語版)を参照されたい。 n に平方因子が存在しない場合、位数 n の群
有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアに因んでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。
の部分集合 A が補有限(ほゆうげん、英: cofinite; 余有限)であるとは、A の X における補集合が有限集合であることをいう。すなわち、補有限集合 A は「 X の有限個の例外を除く全ての元を含む」ような X の部分集合である。補集合が有限でなく可算である場合、その集合は補可算(あるいは余可算)であるという。
をとる外部総和型のセル・オートマトンの例である。同じく外部総和型でムーア近傍だが、規則をライフゲームとは変えたセル・オートマトンを欧米では "life-like" と呼ぶ。 CAの概念は様々な拡張が可能である。 例えば、矩形の格子ではなく別の多角形を使うという拡張がある。例えば六角形