语言
没有数据
通知
无通知
最大クリーク問題(さいだいクリークもんだい)は、グラフ理論において、グラフ中のクリーク(任意の二頂点間に枝があるような頂点集合)の中で最大のものを見つける問題。NP困難であることが知られている。 この問題は、補グラフに対する最大独立集合問題と等価である。 近似アルゴリズムについても研究されているが、グラフの頂点数を
{\displaystyle x} が集合 A {\displaystyle A} に含まれるという条件のことを制約条件、制約関数(英: constraint,constraint function)と呼ぶ。制約条件の集合 A を実行可能領域(英: feasible region)あるいは許容領域と呼び、そ
ウィクショナリーに関連の辞書項目があります。 問題 問題(もんだい、英: problem)とは、(問題解決の分野では)現状と目標との間にある障害(差、ギャップ)のことである。 その他に、一般には次のような意味をもつ。 問い(英: question) - 試験における問題(question) 課題 -
最小極大マッチング問題(さいしょうきょくだいマッチングもんだい)は、与えられたグラフ G の極大マッチングの中で大きさが最小のものを見つける問題。NP困難な問題であることが知られている。 この問題に対しては、最大マッチング問題の解を求めるアルゴリズムを適用することで、近似度2 の解が得られることは容易に示すことができるが、近似度が
最大フロー最小カット定理(さいだいフローさいしょうカットていり、英: Max-flow min-cut theorem)は、フローネットワークにおける最大フロー問題についての定理である。これは、ネットワークに流れる「もの」の最大流量が、ボトルネックによって決まることを意味している。線形計画法について
グラフ理論における最短経路問題(さいたんけいろもんだい、英: shortest path problem)とは、重み付きグラフの与えられた2つのノード間を結ぶ経路の中で、重みが最小の経路を求める最適化問題である。 2頂点対最短経路問題 特定の2つのノード間の最短経路問題。一般的に単一始点最短経路問題のアルゴリズムを使用する。
最大独立集合問題(さいだいどくりつしゅうごうもんだい)は、グラフ理論において、与えられたグラフ G(V,E) に対して、頂点集合 V'⊆V のうち V' 内の頂点間に枝が存在しないようなもの(独立集合)で大きさが最大のものを求める問題。最大安定集合問題とも言う。この問題は、NP困難であることが知られている。
〖flow〗