语言
没有数据
通知
无通知
培うだろう。 大半の数学者での数学的な美の顕著な経験は、能動的な数学の研究活動からもたらされる。受動的な方法で数学の喜びを楽しむことは大変に難しく、特に数学では、見物人、視聴者、傍観者の立場ではそのような経験をすることはないだろう
行儀が良い」関数でもあることが分かる。 病的な例はしばしばいくらかの好ましくないかまたは珍奇な特性をもつ。その特性はある理論の中では有意義を成り立たせるように説明するのが難しい。そのような病的な振る舞いはしばしば新しい理論とより一般的な結果をもたらす新しい研究を促す。たとえば、これらのいくつかの重要な歴史的な例は次のようである:
〖joke〗
のすべての元は K 上代数的である。 すべての元が代数的であるような拡大を代数拡大と呼ぶ。代数拡大は有限次であるとは限らず、したがって有限個の代数的な元で生成されるとは限らない(記事代数拡大を参照)。 K 上代数的な元の 次数 は拡大 K(a) / K の次数である。a は代数的なので、それは K-ベクトル空間
_{i}-\alpha _{j})^{2}} を α の判別式 (discriminant) という。代数的数の判別式は有理数であり、代数的整数の判別式は有理整数である。0 でない代数的数の判別式は 0 ではない。 代数的数 α の共役数を α 1 , α 2 , ⋯ , α n {\displaystyle \alpha
類似において一方で成り立つ理論が他方でも成り立つのではないかという予想を構造の知見が容易にしていることを意味する。例えば、整数環と有限体上の1変数多項式環との間の構造の類似においてアンドレ・ヴェイユにより、リーマン予想に類似
三角形、円、球、多面体、位相空間、および多様体のような対象を持つ。別の分科の代数学は、群、環、体、格子、および束といった対象を持つ。圏は、数学的対象を一斉に生じさせるものであるとともに、それ自体がひとつの数学的対象である。 数学的対象の存在論的な立場は、数学の哲学で調査および議論される重要な主題で
キリング・ジョーク(英語:Killing Joke)は、イングランド出身のロック・バンド。 インダストリアル・ロックの代表的グループとして知られる。ポストパンク勢として実験的な要素を取り入れて進化し続け、その音楽性は1990年代以降のオルタナティヴ・ロックをはじめ、様々なジャンルのアーティストに影響を与えた。