语言
没有数据
通知
无通知
的な特徴を浮き彫りにすることができる[要出典]。 付加構造の一つの例は、順序関係 ≤ で、これによりベクトルの比較が行えるようになる。例えば、実 n-次元空間 Rn は、ベクトルを成分ごとに比較することで順序づけることができる。また、ルベーグ積分は函数を二つの正値函数の差 f = f + − f −
空間ベクトル(くうかんベクトル、ドイツ語: Vektor, 英語: vector, ラテン語: vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトル
。ベクトル空間モデルによる検索は高次元のベクトル空間上に配置した検索対象のベクトル表現と検索語のベクトル表現の相関量をコサイン類似度、内積、距離等によって計算して関連度を求める。 単語文書行列とはメタデータの生成・表現法の一つであり、ベクトル空間モデルによる検索を行う際に非常に頻繁に用いられるメタ
は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。 接ベクトル空間は、多様体上の点ごとに定義されるベクトル空間である。接ベクトル空間の元を接ベクトルという。全ての点で接ベクトルが定まっているとベクトル場というものが定義できる。ベクトル場は多様体の形を調べたり、多様体上の粒子の運
数学における次数付きベクトル空間(じすうつきベクトルくうかん、英: graded vector space; 次数ベクトル空間、次数付き線型空間、次数線型空間)は、次数付け(英語版) (grading) と呼ばれる追加の構造を持つベクトル空間であり、次数付けにより適当な線型部分空間の直和として記述される。
となるように選ばれたものである)。 最後に、この列が内積の定めるノルムに関して稠密な(代数的)線型包を持つことは、このとき [−π,π] 上の連続な周期函数が一様ノルムに関して成すノルム空間においてこの列が稠密な線型包を持つことから従う。これは、三角多項式の一様稠密性に関するヴァイエルシュトラスの定理の内容である。 内積空間
v)} であり、線形変換 f は斜交形式を保存する。斜交変換全ての集合は群をなし、特にリー群になり、斜交群と呼ばれ、Sp(V) あるいは Sp(V, ω) と記す。行列の形式によると、斜交変換は斜交行列により与えられる。 W を V の部分空間とする。W の斜交補空間を、 W ⊥ = { v ∈
数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、英: dual vector space)あるいは単に双対空間(そうついくうかん、英: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間