语言
没有数据
通知
无通知
(1)〔differentiation〕
微分積分学において、対数微分法 (logarithmic differentiation) あるいは対数をとることによる微分 (differentiation by taking logarithms) は関数 f の対数導関数を用いるすることによって関数を微分するために使われる手法である [ ln
顕微分光法(けんびぶんこうほう、英: microspectroscopy) は吸光度や吸収スペクトルにより微小領域の定性的定量的測定を行う分光法。 光学顕微鏡で特定の波長の光を試料に照射して吸光度や吸収スペクトル、散乱を測定することで微量物質の定性的定量的測定を行う。
微分の記法 (びぶんのきほう、英語: notation for differentiation) とは、数学における微分を記号的に表記するための方法である。現在、数学関数や従属変数の微分を表す微分の記法として画一化・統一されたものはなく、複数の数学者によって異なる記法が提案されている。それぞれの記法
〔数〕 偏導関数を求めること。
微分音(びぶんおん)は、半音よりさらに細かく分けられた音程を指す。 平均律において半音より狭い音程のことを微分音程または微分音と呼ぶ。代表的な例として、半音をさらに半分に割った四分音、半音を3分の1に割った六分音、四分音を半分に割った八分音などがある。なおこれらの日本語での表記にはアラビア数字でなく漢数字が多く使われる。
可微分多様体上、外微分(がいびぶん、英: exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。
entropy)または連続エントロピー(continuous entropy)は情報理論における概念で、シャノン情報量(確率変数が持つ平均的自己情報量(英語版)の尺度)を連続型確率分布にまで拡張するクロード・シャノンの試みに端を発する。情報量の概念を連続量まで真に拡張したものに limiting density