语言
没有数据
通知
无通知
の形の無限級数である。ここで an は n 番目の項の係数を表し、c は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において c(級数の中心 (center))は 0 である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形
自然数 n が多冪数(たべきすう、英: powerful number)であるとは、素数 p が n を割り切るとき、p の平方も n を割り切ることをいう。 多冪数は無数に存在し、1 から小さい順に列記すると 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72,
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
を法とする整数の乗法群(もしくは環 Z/pnZ の単数群を考えることと同等)は巡回的である。一方で2の冪は一般には原始根を持たない。Z/2nZ の単数群は n = 1, 2 では巡回的だが、n が3以上なら巡回的ではなく、2つの巡回群の直積 C2×C2n-2 に同型である。
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
完全な形式的検証は、システムにプログラミングの誤りがないことを保証する既知の唯一の方法である。 “ ” ACMシンポジウムで発表された論文の要約から 形式的検証の適用例としては、内部にメモリを持つ暗号回路、組み合わせ回路、デジタル回路などのシステム、ソースコードで表現されるソフトウェアがある。 これらのシステムの検証
代数式とは加減乗除冪根の6種類の符号によって連結されている数式をいい、それ以外の式を超越式という。代数式には有理式と無理式がある。 代数式 有理式 - 根号を含まない代数式 整式(有理整式) - 文字の分母を含まない式 単項式( − 3 x 3 y 2 {\displaystyle -3x^{3}y^{2}}
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。