语言
没有数据
通知
无通知
固体の性質の一。 固体に, ある限界以上の力を加えると連続的に変形し, 力を除いても変形したままで元に戻らない性質。 可塑性。
性指数(m値)が高く、一般にm値が0.3以上で破断伸びが200%以上であることが超塑性挙動発現の判断基準とされる。超塑性現象を発現していると、その変形応力も低下し、ニッケル基超合金などの高強度難加工材ではこの現象を利用して鍛造などの塑性加工をする方法が実用化されている。また、超塑性
物体に外から力を加えれば変形し, その力を取り除けば元の形に戻ろうとする性質。 体積に関する体積弾性と, 形に関する形状弾性とに区別される。
加工時の温度が材料の再結晶温度と比べて高いか低いかによって、以下のように分類される。 熱間加工 材料の変形抵抗が小さく加工性が良いが、表面性状や寸法精度は劣る。 温間加工 熱間と冷間の中間の加工法であり、両者の特長をうまく利用している。炭素鋼の場合は350-450℃付近で青熱脆性が現れるので注意が必要。 冷間加工
弾性エネルギー(だんせいエネルギー、英語: elastic energy)とは、ばねやゴムなどの弾性体の変形に伴うエネルギーである。位置エネルギーの一種である。 フックの法則に従うばね係数 k のばねの伸びが x であるときの弾性エネルギーは U = 1 2 k x 2 {\displaystyle
超弾性(ちょうだんせい、Hyperelasticity)とは、物体を構成する物質の力学的特性の数理的表現のひとつであり、ひずみエネルギー密度関数(単位体積あたりのひずみエネルギーを表す弾性ポテンシャル)を有することが特徴である。超弾性を有する物質を超弾性体とよび、ゴムの最も簡易なモデルとして登場し
光弾性(こうだんせい、Photoelasticity)とは、外力を受けた弾性体が複屈折を起こす性質。光弾性の性質を持つ物体を光弾性体という。 光弾性は、材料の応力分布を解析する実験法としてよく使われる。単純な計算で求めた応力分布と比較して、かなり正確な分布が得られる。材料の臨界応力を求めるのに重要な
エントロピー弾性(エントロピーだんせい)とは、外部の力によって規則的に配列していた分子が、エントロピー増大則に従って元の不規則な状態へ戻ろうとする性質のこと。温度を一定にして体積を変化させたときのエントロピー変化により生じる弾性力。 通常、固体は圧縮すると発熱する。ところがゴムは伸長する時に発熱して